soal limit fungsi aljabar!!!
1. soal limit fungsi aljabar!!!
Sejauh ini ane cuma bisa dapet hasilnya segini bro.
Udah ane coba pake cara lain mentok mentok yg paling praktis ini sih.
Check this out
.
.
.
.
2. soal limit fungsi aljabar
Jawaban:
1. (5x+1)
=5(3)+1
=16
2. (2x+3)(3x-4)
=(2(2)+3)(3(2)-4)
=(7)(2)
=14
3. soal limit fungsi aljabar
Maaf ya sebelumnya aku pakai file foto, soalnya aku pengguna android.
Jadi, karena pembilang ama penyebut nya ada si x nya pembuat nol nya, maka kita kalikan sekawan dari pembilang dan juga sekawan dari penyebutnya juga.
4. kumpulan soal tentang limit fungsi aljabar beserta jawabannya
soal dan penyelesaian
5. Soal tentang limit fungsi aljabar
°Soal tentang limit fungsi aljabar:
a. Lim dari 4x - 3 untuk x mendekati 2
b. Lim dari (2x^2 + 5) untuk x mendekati - 1
°Kunci Jawaban:
a. Lim 4x - 3 untuk x mendekati 2
= 4 (2) - 3 = 5
b. Lim (2x^2 + 5) untuk x mendekati - 1
= 2 (-1)^2 + 5 = 7
Semoga bermanfaat.
6. Jawablah soal limit fungsi aljabar! soal no 10&15
Jawab:
Penjelasan dengan langkah-langkah:
limit
soal 10
[tex]\rm lim_{x \to 0}~ \dfrac{x}{2-\sqrt{5-x}}\rm[/tex]
[tex]\rm lim_{x \to 0}~ \dfrac{x(2 + 2)}{4-4+x}}\rm[/tex]
[tex]\rm lim_{x \to 0}~ \dfrac{x(4)}{x}= 4\rm[/tex]
soal 15
[tex]\sf lim_{x\to\infty}~ x- \sqrt{x^2- 9}[/tex]
[tex]\sf lim_{x\to\infty}~ \sqrt{x^2}- \sqrt{x^2- 9}[/tex]
[tex]\sf ~ \frac{b-q}{2\sqrt a} = \frac{0 +9}{2\sqrt 1} = \frac{9}{2}[/tex]
7. contoh soal limit fungsi aljabar tak terhingga
mungkin bisa juga kalo akar tak hingga
8. Nilai limit fungsi aljabar dan contoh soalnya
Jawaban:
100 la tak tau ke
Penjelasan dengan langkah-langkah:
macam tu tau
9. Tolong jawab soal ini tentang limit fungsi aljabar??
Limit Fungsi
Jika ada pertanyaan silahkan tanyakan ^-^
10. Limit fungsi Aljabar! Hitunglah limit fungsi tersebut!
Kelas:IX
Pelajaran:matematika
Materi:limit
Kata kunci:limit
Ka2k bantu jawab no 3 & 4 ya dek..
Jawaban terlampir ya...
11. contoh soal limit fungsi aljabar tak terhingga
Mapel : Matematika
Kelas : XI
Materi : Limit
Sub Materi : Limit Tak Hingga
12. Bantuin Soal - soal tentang Bab Limit Fungsi Aljabar
Hasil limit dari soal-soal tersebut adalah sebagai berikut.
Penjelasan dengan Langkah-Langkah[tex] 1.~lim_{x\to 4} \frac{x^2-4x-4}{x-5} \\ =\frac{4^2-4(4)-4}{4-5}\\ =\frac{16-16-4}{-1}\\ =\frac{-4}{-1}\\ =4 [/tex]
[tex]2.~lim_{x\to -3} \frac{x^2-2x-5}{x^2-9}\\ =\frac{(-3)^2-2(-3)-5}{(-3)^2-9}\\ =\frac{9+6-5}{9-9}\\ =\frac{10}{0}\\ =\infty [/tex]
[tex]3.~lim_{x\to -2} \frac{x^2-3x-10}{x-2}\\ =\frac{(-2)^2-3(-2)-10}{-2-2}\\ =\frac{4+6-10}{-4}\\ =\frac{0}{-4}\\ =0 [/tex]
[tex]4.~lim_{x\to -4} \frac{x^2+3x-4}{x^2+6x+8}\\ =lim_{x\to -4} \frac{(x+4)(x-1)}{(x+4)(x+2)}\\ =lim_{x\to -4} \frac{x-1}{x+2}\\ =\frac{-4-1}{-4+2}\\ =\frac{-5}{-2}\\ =\frac{5}{2} [/tex]
[tex]5.~lim_{x\to 6} \frac{x^2-8x+12}{x^2-4x-12}\\ =lim_{x\to 6} \frac{(x-6)(x-2)}{(x-6)(x+2)}\\ =lim_{x\to 6} \frac{x-2}{x+2}\\ =\frac{6-2}{6+2}\\ =\frac{4}{8}\\ =\frac{1}{2} [/tex]
[tex]6.~lim_{x\to -7} \frac{x^3-49x}{x^2+7x}\\ =lim_{x\to -7} \frac{x(x+7)(x-7)}{x(x+7)}\\ =lim_{x\to -7} (x-7)\\ =-7-7\\ =-14 [/tex]
[tex]7.~lim_{x\to 5} \frac{25-x^2}{2-\sqrt{x-1}}\\ =lim_{x\to 5} \frac{25-x^2}{2-\sqrt{x-1}}\times\frac{2+\sqrt{x-1}}{2+\sqrt{x-1}}\\ =lim_{x\to 5} \frac{(5^2-x^2)(2+\sqrt{x-1})}{2^2-(x-1)}\\ =lim_{x\to 5} \frac{(5+x)(5-x)(2+\sqrt{x-1})}{4-x+1}\\ =lim_{x\to 5} \frac{(5+x)(5-x)(2+\sqrt{x-1})}{5-x}\\ =lim_{x\to 5} (5+x)(2+\sqrt{x-1})\\= (5+5)(2+\sqrt{5-1})\\ =(10)(2+\sqrt{4})\\ =(10)(2+2)\\ =(10)(4)\\ =40 [/tex]
[tex]8.~lim_{x\to\infty}\frac{(2x^2-4)^4}{4x^8+7}\\ =lim_{x\to\infty}\frac{(2-4x^{-2})^4}{4+7x^{-8}}\\ =\frac{(2-4(0))^4}{4+7(0)}\\ =\frac{2^4}{4}\\ =\frac{16}{4}\\ =4 [/tex]
[tex]9.~lim_{x\to\infty}\frac{2x^2-4}{x^2\sqrt{x}+8}\\ =lim_{x\to\infty}\frac{2(\sqrt{x})^{-1}-4(x^2\sqrt{x})^{-1}}{1+8(x^2\sqrt{x})^{-1}}\\ =\frac{2(0)-4(0)}{1+8(0)}\\ =\frac{0}{1}\\ =0 [/tex]
[tex]10.~lim_{x\to\infty}\frac{(5x^2-2)^3}{9x^5+11}\\ =lim_{x\to\infty}\frac{(5-2x^{-2})^3}{9x^{-1}+11x^{-6}}\\ =\frac{(5-2(0))^3}{9(0)+11(0)}\\ =\frac{5^3}{0}\\ =\frac{125}{0}\\ =\infty [/tex]
[tex]11.~lim_{x\to\infty}(\sqrt{6x-8}-2\sqrt{3x+3})\\ =lim_{x\to\infty}(\sqrt{6x-8}-2\sqrt{3x+3})\times\frac{\sqrt{6x-8}+2\sqrt{3x+3}}{\sqrt{6x-8}+2\sqrt{3x+3}}\\ =lim_{x\to\infty}\frac{(6x-8)-2^2(3x+3)}{\sqrt{6x-8}+2\sqrt{3x+3}}\\ =lim_{x\to\infty}\frac{6x-8-12x-12}{\sqrt{6x-8}+2\sqrt{3x+3}}\\ =lim_{x\to\infty}\frac{-6x-20}{\sqrt{6x-8}+2\sqrt{3x+3}}\\ =lim_{x\to\infty}\frac{-6-20x^{-1}}{\sqrt{6x^{-1}-8x^{-2}}+2\sqrt{3x^{-1}+3x^{-2}}}\\ =\frac{-6-20(0)}{\sqrt{6(0)-8(0)}+2\sqrt{3(0)+3(0)}}\\ =\frac{-6}{0}\\ =-\infty [/tex]
[tex]12.~lim_{x\to\infty}(4\sqrt{x-6}-\sqrt{16x+5})\\ =lim_{x\to\infty}(4\sqrt{x-6}-\sqrt{16x+5})\times\frac{4\sqrt{x-6}+\sqrt{16x+5}}{4\sqrt{x-6}+\sqrt{16x+5}}\\ =lim_{x\to\infty}\frac{4^2(x-6)-(16x+5)}{4\sqrt{x-6}+\sqrt{16x+5}}\\ =lim_{x\to\infty}\frac{16x-96-16x+5}{4\sqrt{x-6}+\sqrt{16x+5}}\\ =lim_{x\to\infty}\frac{-91}{4\sqrt{x-6}+\sqrt{16x+5}}\\ =lim_{x\to\infty}\frac{-91(\sqrt{x})^{-1}}{4\sqrt{1-6x^{-1}}+\sqrt{16+5x^{-1}}}\\ =\frac{-91(0)}{4\sqrt{1-6(0)}+\sqrt{16+5(0)}}\\ =\frac{0}{4(1)+4}\\ =\frac{0}{8}\\ =0 [/tex]
[tex]13.~lim_{x\to\infty}(\sqrt{5x^2-3x+8}-\sqrt{5x^2-8x-3})\\ =lim_{x\to\infty}(\sqrt{5x^2-3x+8}-\sqrt{5x^2-8x-3})\times\frac{\sqrt{5x^2-3x+8}+\sqrt{5x^2-8x-3}}{\sqrt{5x^2-3x+8}+\sqrt{5x^2-8x-3}}\\ =lim_{x\to\infty}\frac{(5x^2-3x+8)-(5x^2-8x-3)}{\sqrt{5x^2-3x+8}+\sqrt{5x^2-8x-3}}\\ =lim_{x\to\infty}\frac{5x^2-3x+8-5x^2+8x+3}{\sqrt{5x^2-3x+8}+\sqrt{5x^2-8x-3}}\\ =lim_{x\to\infty}\frac{5x+11}{\sqrt{5x^2-3x+8}+\sqrt{5x^2-8x-3}}\\ =lim_{x\to\infty}\frac{5+11x^{-1}}{\sqrt{5-3x^{-1}+8x^{-2}}+\sqrt{5-8x^{-1}-3x^{-2}}}\\ =\frac{5+11(0)}{\sqrt{5-3(0)+8(0)}+\sqrt{5-8(0)-3(0)}}\\ =\frac{5}{\sqrt{5}+\sqrt{5}}\\ =\frac{5}{2\sqrt{5}}\\ =\frac{1}{2}\sqrt{5} [/tex]
Pelajari Lebih Lanjut,Materi tentang menentukan suatu nilai dari limit: https://brainly.co.id/tugas/21950255
#BelajarBersamaBrainly
13. Contoh soal dan pembahasan limit fungsi aljabar
a.lim 4
x >3
b.lim 3x
x >3
c.lim 3x/2
x->2
sorry cmn soalnya aja
14. Limit Fungsi aljabar! Hitung limit fungsi tersebut!
Semoga membantu$###########
15. soal tentang limit fungsi aljabar bentuk tak tentu
semua menggunakan rumus turunan
16. tolong soal LIMIT FUNGSI ALJABAR
limit 0/0
memfaktorkan
no. 4
lim x→a (x² - a²)/(x - a)
= lim x→a (x + a)(x - a)/(x - a)
= lim x→a (x + a)
= a + a
= 2a
no. 5
lim x→3 (x² + x - 12)/(x² + 2x - 15)
= lim x→3 (x + 4)(x - 3) / (x + 5)(x - 3)
= (3 + 4)/(3 + 5)
= 7/8
17. Tolong dibantuu . soal terlampir Limit Fungsi Aljabar
Jawab:
Penjelasan dengan langkah-langkah:
Jawab:
Penjelasan dengan langkah-langkah:
18. jawablah soal tentang limit fungsi aljabar tersebut?
Jawab:
[tex]-\frac{5}{6}[/tex]
Penjelasan dengan langkah-langkah:
lim x→-1 [tex]\frac{x^{2} +7x+6}{x^{2}-4x-5}[/tex]
lim x→-1 [tex]\frac{(x+1)(x+6)}{(x-5)(x+1)}[/tex]
lim x→-1 [tex]\frac{(x+6)}{(x-5)}[/tex]
lim x→-1 [tex]\frac{-1+6}{-1-5}[/tex]
lim x→-1 [tex]\frac{5}{-6}[/tex]
= [tex]-\frac{5}{6}[/tex]
19. tolong ya kerjakan soal limit fungsi aljabar
Mudah-mudahan Benar.. Maaf yah kalau salah..
20. Soal limit fungsi aljabar no.18
Jawab:
Penjelasan dengan langkah-langkah:
0 Comments